11 research outputs found

    Efficient Teleportation between Remote Single-Atom Quantum Memories

    Full text link
    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0+/-1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.Comment: 7 pages, 4 figures, 1 tabl

    Increased Dimensionality of Raman Cooling in a Slightly Nonorthogonal Optical Lattice

    Get PDF
    We experimentally study the effect of a slight nonorthogonality in a two-dimensional optical lattice onto resolved-sideband Raman cooling. We find that when the trap frequencies of the two lattice directions are equal, the trap frequencies of the combined potential exhibit an avoided crossing and the corresponding eigenmodes are rotated by 45 degrees relative to the lattice beams. Hence, tuning the trap frequencies makes it possible to rotate the eigenmodes such that both eigenmodes have a large projection onto any desired direction in the lattice plane, in particular, onto the direction along which Raman cooling works. Using this, we achieve two-dimensional Raman ground-state cooling in a geometry where this would be impossible, if the eigenmodes were not rotated. Our experiment is performed with a single atom inside an optical resonator but this is inessential and the scheme is expected to work equally well in other situations

    Breakdown of atomic hyperfine coupling in a deep optical-dipole trap

    Full text link
    We experimentally study the breakdown of hyperfine coupling for an atom in a deep optical-dipole trap. One-color laser spectroscopy is performed at the resonance lines of a single 87^{87}Rb atom for a trap wavelength of 1064 nm. Evidence of hyperfine breakdown comes from three observations, namely a nonlinear dependence of the transition frequencies on the trap intensity, a splitting of lines which are degenerate for small intensities, and the ability to drive transitions which would be forbidden by selection rules in the absence of hyperfine breakdown. From the data, we infer the hyperfine interval of the 5P1/25P_{1/2} state and the scalar and tensor polarizabilities for the 5P3/25P_{3/2} state

    Generation of single photons from an atom-cavity system

    Full text link
    A single rubidium atom trapped within a high-finesse optical cavity is an efficient source of single photons. We theoretically and experimentally study single-photon generation using a vacuum stimulated Raman adiabatic passage. We experimentally achieve photon generation efficiencies of up to 34% and 56% on the D1 and D2 line, respectively. Output coupling with 89% results in record-high efficiencies for single photons in one spatiotemporally well-defined propagating mode. We demonstrate that the observed generation efficiencies are constant in a wide range of applied pump laser powers and virtual level detunings. This allows for independent control over the frequency and wave packet envelope of the photons without loss in efficiency. In combination with the long trapping time of the atom in the cavity, our system constitutes a significant advancement toward an on-demand, highly efficient single-photon source for quantum information processing tasks.Comment: 7 pages, 5 figure

    An Elementary Quantum Network of Single Atoms in Optical Cavities

    Full text link
    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.Comment: 8 pages, 5 figure

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore